\#1 Points possible: 1. Total attempts: 0

Combine the following expressions.

$$
4 \sqrt{10}+3 \sqrt{10}=7 \sqrt{10}
$$

\#2 Points possible: 1. Total attempts: 0

Combine the following expressions.
$5 \sqrt[3]{4}+8 \sqrt[3]{4}=13 \sqrt[3]{4}$

\#3 Points possible: 1. Total attempts: 0

Combine the following expressions.

$$
6 x \sqrt{3}-8 x \sqrt{3}+8 x \sqrt{3}=6 \times \sqrt{3}
$$

\#4 Points possible: 3. Total attempts: 0
Combine the following expressions.

$$
24 \sqrt{3}-8 \sqrt{3}+24 \sqrt{3}
$$

$$
6 \sqrt{48}-4 \sqrt{12}+4 \sqrt{108}=40 \sqrt{3}
$$

\#5 Points possible: 3. Total attempts: 0
Combine the following expressions. (Assume any variables under an even root are nonnegative.)

$$
7 \sqrt[3]{a^{8} b^{5}}+3 a^{2} \sqrt[3]{a^{2} b^{5}}=\frac{10 a^{2} b \sqrt[3]{a^{2} b^{2}}}{}
$$

$$
\begin{aligned}
& 7 \sqrt[3]{a^{6}} \sqrt[3]{a^{2}} \sqrt[3]{b^{3}} \sqrt[3]{b^{2}}+3 a^{2} \sqrt[3]{a^{2}} \sqrt[3]{b^{3}} \sqrt[3]{b^{2}} \\
& 7 a^{2} b \sqrt[3]{a^{2} b^{2}}+3 a^{2} b \sqrt[3]{a^{2} b^{2}}
\end{aligned}
$$

\#6 Points possible: 3. Total attempts: 0
Combine the following expressions. (Assume any variables under an even root are nonnegative.)

$$
6 x^{4} \sqrt{8 y^{6}}-4 y^{3} \sqrt{32 x^{8}}=\frac{-4 x^{4} y^{2} \sqrt[3]{2}}{6 x^{4} y^{3} \sqrt[3]{4} \sqrt{2}-4 x^{4} y^{3} \sqrt[3]{16} \sqrt{2}} \begin{aligned}
& 12 x^{4} y^{2} \sqrt{2}-16 x^{4} y^{3} \sqrt[3]{2}
\end{aligned}
$$

\#7 Points possible: 2. Total attempts: 0

Combine the following expressions.

$$
8 \sqrt[3]{81}-8 \sqrt[3]{24}=\frac{8}{3}
$$

$8 \sqrt[3]{ } \sqrt{3} \sqrt{81}$

$8 \sqrt[3]{7} \sqrt[3]{3}-8 \sqrt[3]{8} \sqrt[3]{3}$
$24 \sqrt[3]{3}-16 \sqrt[3]{3}$
\#8 Points possible: 2 . Total attempts: 0
Multiply: ${ }_{o R} \sqrt{180}=\sqrt{36} \sqrt{5}=6 \sqrt{5}$

$$
\sqrt{30} \cdot \sqrt{6}=\sqrt{6} \cdot \sqrt{5} \cdot \sqrt{6}=6 \sqrt{5}
$$

\#9 Points possible: 2. Total attempts: 0
Multiply:

$$
(6 \sqrt[3]{5})(4 \sqrt[3]{25})=24 \sqrt[3]{125}=24(5) \neq 120
$$

\#10 Points possible: 2. Total attempts: 0
Multiply:

$$
\sqrt{2}(\sqrt{7}+2 \sqrt{2})=\sqrt{14}+2 \sqrt{4}=\sqrt{14}+4
$$

\#11 Points possible: 3. Total attempts: 0
Multiply:

$$
6+2 \sqrt{35}
$$

$$
(\sqrt{5}+\sqrt{7})(4 \sqrt{5}-2 \sqrt{7})=4 \sqrt{25}-2 \sqrt{35}+4 \sqrt{35}-2 \sqrt{49}=20+2 \sqrt{35}-14
$$

\#12 Points possible: 3 . Total attempts: 0
Multiply (Assume all expressions appearing under a square root symbol represent nonnegative numbers):

$$
(\sqrt{x}-1)(\sqrt{x}+4)=\sqrt{x^{2}}+4 \sqrt{x}-1 \sqrt{x}-4=x+3 \sqrt{x}-4
$$

\#13 Points possible: 3. Total attempts: 0

Multiply:

$$
(\sqrt{3}-2)^{2}=(\sqrt{3}-2)(\sqrt{3}-2)=\sqrt{9}-2 \sqrt{3}-2 \sqrt{3}+4=7-4 \sqrt{3}
$$

\#14 Points possible: 3. Total attempts: 0

Multiply (Assume all expressions appearing under a square root symbol represent nonnegative numbers):

$$
(\sqrt{x}+\sqrt{7})(\sqrt{x}-\sqrt{7})=\sqrt{x^{2}}-\sqrt{7 x}+\sqrt{7 x}-\sqrt{49}=x-7
$$

\#15 Points possible: 3. Total attempts: 0
Rationalize the denominator in the following:

$$
\frac{\sqrt{10}}{\sqrt{3}+\sqrt{10}}=\left(\frac{\sqrt{30}-10}{-7}\right)
$$

\#16 Points possible: 3 . Total attempts: 0
Rationalize the denominator in the following:

$$
\begin{aligned}
\frac{(\sqrt{7}+4)(\sqrt{7}+4)}{(\sqrt{7}-4)(\sqrt{7}+4)} & =\frac{\sqrt{49}+4 \sqrt{7}+4 \sqrt{7}+16}{7-4} \\
& =\frac{7+8 \sqrt{7}+16}{3}
\end{aligned}
$$

\#17 Points possible: 3. Total attempts: 0

$$
\sqrt{2 a+b}=4
$$

Solve for a in $\sqrt{2 a+6}+4=8$.

$$
a=5
$$

$$
\begin{aligned}
2 a+16 & =16 \\
2 a & =10
\end{aligned}
$$

\#18 Points possible: 3. Total attempts: 0
Solve for x in $\sqrt[4]{2 x+4}=2$.

$$
x=<
$$

$$
\begin{aligned}
2 x+4 & =2^{4} \\
2 x & =12
\end{aligned}
$$

\#19 Points possible: 4. Total attempts: 0
Solve for a in $\sqrt{a+5}=a+5$.

$$
\begin{array}{rlrl}
a+5 & =a^{2}+5 a+5 a+25 \\
a+5 & =a^{2}+10 a+25 & & (a+5)(a+4) \\
0 & =a^{2}+9 a+20 & & a=-5 a=-4
\end{array}
$$

\#20 Points possible: 5. Total attempts: 0
The following equation will require that you square both sides twice before all the radicals are eliminated. Solve the equation using the methods shown in the examples in the book.

$$
\begin{aligned}
& \sqrt{y+10}=\sqrt{y+1}+1 \\
& y= \\
& y+10=(\sqrt{y+1}+1)(\sqrt{y+1}+1) \\
& y+10=y+1+\sqrt{y+1}+\sqrt{y+1}+1 \\
& y+1=y+2+2 \sqrt{y+1} \\
& 8=2 \sqrt{y+1} \\
& 4=\sqrt{y+1} \\
& y+16+1
\end{aligned}
$$

